Journal of Organometallic Chemistry, 216 (1981) 393-402 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND EIGENSCHAFTEN VON UND REAKTIONEN MIT METALLHALTIGEN HETEROCYCLEN

XIX *. EINSCHIEBUNGSREAKTIONEN VON KOHLENOXID UND SCHWEFELDIOXID IN DIE M-C-σ-BINDUNG VON P-HALTIGEN MANGANA- UND RHENACYCLOALKANEN

EKKEHARD LINDNER * und GUIDO FUNK

Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen 1 (B.R.D.)

(Eingegangen den 16. Februar 1981)

Summary

The M-C σ bonds of the four- to six-membered metallacycloalkanes (OC)₄-MPPh₂(CH₂)_n (M = Mn, Re; n = 2-4) can be cleaved with liquid SO₂ at -40°C under formation of the cyclic S-sulfinates (OC)₄MPPh₂(CH₂)_nSO₂. (OC)₄-MnPPh₂CH₂CH₂CH₂SO₂ crystallizes as monoclinic crystals in the centrosymmetric space group P2₁/c with Z = 4. In contrast to the corresponding rhenacycloalkanes CO can also be inserted into the Mn-C σ bonds of the strained fourmembered ring (OC)₄MnPPh₂CH₂CH₂ and (OC)₄MnPPh₂CH₂CH₂CH₂, in the course of which the cycloalkanone derivatives (OC)₄MnPPh₂(CH₂)_nCO (n = 2, 3) are obtained. For n = 3 the reaction is reversible.

Zusammenfassung

Die M—C- σ -Bindungen der vier- bis sechsgliedrigen Metallacycloalkane (OC)₄-MPPh₂(CH₂)_n (M = Mn, Re; n = 2—4) lassen sich mit flüssigem SO₂ bei —40°C unter Bildung der cyclischen S-Sulfinate (OC)₄MPPh₂(CH₂)_nSO₂ spalten. (OC)₄-MnPPh₂CH₂CH₂CH₂SO₂ kristallisiert monoklin in der zentrosymmetrischen Raumgruppe P2₁/c mit Z = 4. Im Gegensatz zu den entsprechenden Rhenacycloalkanen lässt sich in die Mn—C- σ -Bindungen des gespannten Vierrings (OC)₄-MnPPh₂CH₂CH₂CH₂ und von (OC)₄MnPPh₂CH₂CH₂CH₂ auch CO einschieben, wobei die Cycloalkanon-Derivate (OC)₄MnPPh₂(CH₂)_nCO (n = 2, 3) erhalten werden. Für n = 3 ist die Reaktion reversibel.

^{*} Für XVIII. Mitteilung siehe Lit. 26.

⁰⁰²²⁻³²⁸X/81/0000-0000/\$02.50 © 1981 Elsevier Sequoia S.A.

Einleitung

Wie in zahlreichen Beispielen gezeigt werden konnte, eignet sich die Übergangsmetall-Kohlenstoff- σ -Bindung von σ -Alkylkomplexen in charakteristischer Weise für die Einschiebung kleiner, reaktiver Moleküle. Mechanistisch am eingehendsten untersucht wurden CO- und SO₂-Insertionen [1-4]. Der elektrophile Angriff von SO₂ an der M-C- σ -Bindung führt auch bei Komplexen mit niedriger formaler Oxidationszahl des Zentralatoms zunächst zu O-Sulfinaten, die zu entsprechenden S-verknüpften Derivaten isomerisieren [5,6]. Nach einem völlig anderen Mechanismus verläuft die Insertion von Kohlenmonoxid [2,7]. Das besondere Interesse an dieser Reaktion ist darauf zurückzuführen, dass sich hier Kohlenwasserstoffe und andere Substrate zu technisch wichtigen Aldehyden [8], Säuren [9] und Estern [10] funktionalisieren lassen. Auch beim Fischer-Tropsch-Verfahren und seinen Varianten [11], welche auf die katalytische Hydrierung von CO hinauslaufen, spielt die CO-Insertion eine entscheidende Rolle.

Die Spaltung der M—C- σ -Bindung mit CO oder SO₂ ist bei Metallacycloalkanen bisher nur vereinzelt beschrieben $\{12-15\}$. Im Rahmen unserer Untersuchungen über Metallacycloaliphaten mit einer Donorfunktion [16-26] führten wir in Abhängigkeit von der Ringgrösse systematische CO- und SO₂-Einschiebungsreaktionen durch.

Resultate und Diskussion

Vor kurzem berichteten wir über die erstmalige Synthese von P-haltigen Mangana- und Rhenacycloalkanen ausgehend von BrMn(CO)₅ bzw. [BrRe(CO)₄]₂ durch Substitution bzw. Addition und reduktive Cycloeliminierung mit Chloralkyl(diphenyl)phosphanen [24]. Weitere Versuche haben nun gezeigt, dass sich die Metall-Kohlenstoff- σ -Bindung in diesen Heterocyclen als reaktiv erweist. So wird, wie bei σ -Alkylkomplexen [27], schon bei -40°C unter Bildung ringerweiteter Sulfinato-Komplexe SO₂ eingeschoben.

Mit Ausnahme von thermisch labilem $(OC)_4MnPPh_2CH_2CH_2$ verläuft die Reaktion gemäss Gl. 1 bei den vier- bis sechsgliedrigen Metallacyclen nahezu quantitativ. Der viergliedrige Manganacycloaliphat $(OC)_4MnPPh_2CH_2CH_2$ zersetzt sich vermutlich infolge erhöhter Ringspannung bereits bei Raumtemperatur in Lösung zu CO-ärmeren Nebenprodukten und dem Cyclopentanon-Derivat $(OC)_4MnPPh_2CH_2CH_2CO$. Letzteres erhält man gezielt beim Einleiten von Kohlenmonoxid in eine n-Hexan-Lösung von $(OC)_4MnPPh_2CH_2CH_2$ (Gl. 2).

Unter verschärften Bedingungen spaltet CO auch die Mn–C-Bindung in $(OC)_4$ MnPPh₂CH₂CH₂CH₂CH₂ (Gl. 3).

Gl. 3 verläuft reversibel; bereits in Lösung bei Raumtemperatur, schneller beim Erwärmen auf 50°C, tritt Decarbonylierung zum fünfgliedrigen Edukt ein. Beim Manganacyclopentanon $(OC)_4$ MnPPh₂CH₂CH₂CO gelingt eine CO-Abspaltung selbst nicht bei mehrstündigem Erhitzen dieser Verbindung in Toluol. Entsprechende CO-Insertionen wurden beim Manganacyclohexan $(OC)_4$ MnPPh₂CH₂CH₂CH₂CH₂CH₂ nicht durchgeführt, da dieses bei thermischer Belastung zur Ringkontraktion neigt [26].

Die Rhenacycloalkane $(OC)_4 \overline{\text{RePPh}_2(CH_2)_n}$ (n = 2-4) widersetzen sich erwartungsgemäss selbst bei 100°C und 800 bar einer Spaltung der Re-C-Bindung. Diese gelingt nur, wie kürzlich gezeigt wurde, mit Unterstützung einer Lewis-Säure [20].

Die farblosen, cyclischen Acylderivate und SO₂-Komplexe lösen sich ausschliesslich in polaren organischen Solventien wie chlorierten Kohlenwasserstoffen. Mit steigender Ringgrösse nehmen Schmelz- und Zersetzungpunkte ab.

Im Massenspektrum zeigen die Manganacycloalkanone $(OC)_4$ MnPPh₂-(CH₂)_nCO (n = 2, 3) einen wenig intensiven Molekülpeak. Nach Eliminierung einer CO-Gruppe beobachtet man das bekannte Fragmentierungsschema der Edukte $(OC)_4$ MnPPh₂(CH₂)_n (n = 2, 3) [24]. Der monomere Aufbau der cyclischen Sulfinatokomplexe $(OC)_4$ MPPh₂(CH₂)_nSO₂ (M = Mn, Re; n = 2-4) wird durch Felddesorptions-Massenspektren bewiesen.

Durch je vier scharfe Absorptionen sind die IR-Spektren der Insertionsprodukte im Bereich terminaler CO-Valenzschwingungen charakterisiert, welche gegenüber denjenigen der Metallacycloalkane $(OC)_4 MPPh_2(CH_2)_n$ (M = Mn, Re; n = 2-4) nach höheren Wellenzahlen verschoben sind. Mit zunehmender Ringgrösse erscheinen sowohl die energieärmsten C=O-Banden als auch $\nu(\supset C=O)$ der cyclischen Acylverbindungen und die im typischen Sulfinato-S-Bereich liegenden Absorptionen der antisymmetrischen und symmetrischen SO₂-Valenzschwingungen [4] bei niedrigeren Frequenzen (vgl. Tab. 1).

Die Einschiebung von CO bzw. SO_2 bewirkt im ¹H-NMR-Spektrum infolge geringerer Elektronendichte eine Tieffeldverschiebung der Signale der ursprünglich metallbenachbarten Methylenprotonen. Wie bei Pt-Komplexen mit PPh₂haltigen Chelatliganden [28] treten in den ³¹P-{¹H}-NMR-Spektren die Resonanzen von Insertionsprodukten mit gerader Anzahl von Ringatomen gegenüber den ungeradzahligen bei höherem Feld auf.

TABELLE 1

EINIGE CHARAKTERISTISCHE SCHWINGUNGEN IN DEN IR-SPEKTREN (cm⁻¹) DER <u>HETERO-</u> CYCLISCHEN INSERTIONSPRODUKTE (OC)₄MnPPh₂(CH₂)_nCO (n = 2, 3) UND (OC)₄MPPh₂(CH₂)_nSO (M = Mn, Re; n = 2-4)

Verbindung	v(C≡O)				v(C=0) ^b	
(OC) ₄ MnPPh ₂ CH ₂ CH ₂ CO (OC) ₄ MnPPh ₂ CH ₂ CH ₂ CH ₂ CO	2066m-st 2070m	2003m 2006m-st	1974sst 1972sst	1965(Sch) ^a 1958st ^a	1643m 1610m v _{as} (SO ₂) ^c	ν _s (SC
$(OC)_4 \underline{MnPPh_2CH_2CH_2SO_2} \\ (OC)_4 \underline{MnPPh_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{MnPPh_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{MnPPh_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{RePPh_2CH_2CH_2SO_2} \\ (OC)_4 \underline{RePPh_2CH_2SO_2} \\ (OC)_4 \underline{RePPh_2SO_2} \\ (OC)_4 \underline{RPPh_2SO_2} \\ $	2098m	2033st	2018sst	1993st ^b	1193m	1050:
	2095m	2040st	2003sst	1991st ^d	1183m	1040:
	2095m	2036st	2004sst	1990st ^d	1165m	1038:
	2114m	2031 (Sch)	2019sst	1991st ^b	1185m	1054:
$(OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2SO_2} \\ (OC)_4 \underline{\text{RePPh}_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH$	2110m	2041sst	2004st	1986st ^a	1180m	1043:
	2112m	2044st	2004sst	1981st ^a	1172m	1040:

^a CCl₄. ^b CHCl₃. ^c KBr. ^d CH₂Cl₂/CCl₄ 1/1.

 $\frac{\text{Mit Interplanarwinkeln von 118.3}^{\circ} \text{ und 151.8}^{\circ} \text{ besitzt (OC)}_{4}\overline{\text{MnPPh}_{2}\text{CH}_{2}}}{\overline{\text{CH}_{2}\text{CH}_{2}\text{SO}_{2}}\text{ eine verzerrte Sesselform (vgl. Fig. 1). Die SO_{2}-Gruppe erschwert durch ihre $\pi-$Akzeptoreigenschaften das Rückbindungsvermögen anderer koordinierter Liganden, was sich in einer Vergrösserung des Mn(2)-P(3)- und Mn(2)-C(10)-Abstandes im Vergleich zur Ausgangsverbindung (OC)}_{4}\overline{\text{MnPPh}_{2}}-\overline{\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}}$ [23,24] äussert. Die Mn(2)-S(1)- und S(1)-C(6)-Bindungslängen

Fig. 1. ORTEP-Bild des Heterocyclus $(OC)_4$ MnPPh₂CH₂CH₂CH₂CO₂. Die thermischen Schwingungsellipsoide entsprechen 50% der Aufenthaltswahrscheinlichkeit.

396

TABELLE 2

ABSTANDE UND WINKEL IM HETEROCYCLUS (OC)4MnPPh2CH2CH2CH2SO2; ZUR BEZEICHNUNG
DER ATOME SIEHE Fig. 1 (Die in Klammern angegebenen Zahlen sind die Standard-Abweichungen in
Einheiten der letzten Dezimalstelle)

(a) Abstände in pm			
S(1)—Mn(2)	231.2(2)	P(3)—C(4)	182.8(8)
S(1)—C(6)	179.8(9)	P(3)—C(13)	184.0(7)
S(1)-O(7)	147.2(6)	P(3)—C(19)	181.4(7)
S(1)-O(8)	145.1(7)	C(4)—C(5)	153.0(11)
Mn(2)—P(3)	234.2(2)	C(5)-C(6)	151.7(12)
Mn(2)—C(9)	188.9(9)	C(9)—O(9)	111.6(11)
Mn(2)C(10)	180.7(9)	C(10)O(10)	114.5(11)
Mn(2)C(11)	182.0(9)	C(11)O(11)	112.7(12)
Mn(2)C(12)	185.2(9)	C(12)O(12)	112.9(11)
(b) Winkel in Grad			
Mn(2)—S(1)—C(6)	112.9(3)	S(1)-Mn(2)-C(12)	87.2(3)
Mn(2)-S(1)-O(7)	109.3(3)	P(3)-Mn(2)-C(9)	90.4(3)
O(7)-S(1)-O(8)	115.8(4)	P(3)-Mn(2)-C(10)	88.9(3)
O(7)-S(1)-C(6)	103.2(4)	P(3)—Mn(2)—C(11)	178.1(3)
O(8)—S(1)—C(6)	104.4(4)	P(3)-Mn(2)-C(12)	93.9(3)
O(8)—S(1)—Mn(2)	111.0(3)	C(9)-Mn(2)-C(10)	93.2(4)
S(1)—Mn(2)—P(3)	92.3(1)	C(9)—Mn(2)—C(11)	87.8(4)
S(1)-Mn(2)-C(9)	87.3(3)	C(9)—Mn(2)—C(12)	173.1(3)
S(1)—Mn(2)—C(10)	178.7(3)	C(10)—Mn(2)—C(11)	91.7(4)
S(1)—Mn(2)—C(11)	87.0(3)	C(10)—Mn(2)—C(12)	92.3(4)
C(11)—Mn(2)—C(12)	87.8(4)	P(3)-C(4)-C(5)	117.6(6)
Mn(2)—P(3)—C(4)	117.6(3)	C(4)—C(5)—C(6)	113.5(7)
Mn(2)—P(3)—C(13)	113.9(2)	S(1)C(6)C(5)	113.5(6)
Mn(2)—P(3)—C(19)	111.1(2)	Mn(2)—C(9)—O(9)	176.6(8)
C(4)P(3)C(13)	100.1(3)	Mn(2)-C(10)-O(10)	177.6(8)
C(4)—P(3)—C(19)	107.1(4)	Mn(2)-C(11)-O(11)	178.1(8)
C(13)—P(3)—C(19)	106.0(3)	Mn(2)-C(12)-O(12)	175.9(8)

stimmen mit der Summe der Kovalenzradien [29] überein. Etwas länger als beim Schwefeldioxid [30] und gut vergleichbar mit einigen bei offenkettigen, eisenhaltigen Sulfinato-S-Komplexen gefundenen Werten [31-33], sind die S(1)-O(7)- bzw. S(1)-O(8)-Distanzen (vgl. Tab. 2).

Alle Winkel der im Heterocyclus liegenden Atome sind im Vergleich zu den entsprechenden Koordinationspolyedern aufgeweitet. Die grössten Abweichungen findet man bei P(3) und C(4). Die zueinander *trans*-ständigen Carbonylgruppen neigen sich zum Schwefel und bilden untereinander einen Winkel von 173° . Die Koordinationssphären der übrigen Atome zeigen nur geringe Verzerrungen.

Experimenteller Teil

Kohlenmonoxid wurde mit Phosphorpentoxid und Molekularsieb, Schwefeldioxid zusätzlich mit könz. H_2SO_4 getrocknet und gereinigt. Alle anderen Arbeitsschritte erfolgten unter N_2 -Atmosphäre in getrockneten (Natrium, P_4O_{10} , Molekularsieb), frisch destillierten und N_2 -gesättigten Lösungsmitteln.

Darstellung der CO-Insertionsprodukte $(OC)_4 MnPPh_2CH_2CH_2CO$ und $(OC)_4 - MnPPh_2CH_2CH_2CH_2CO$

(1) 2,2,2,2-Tetracarbonyl-1,1-diphenyl-1-phospha-2-manganacyclopentanon(3). In eine Lösung von 155 mg (0.41 mmol) (OC)₄MnPPh₂CH₂CH₂ [24] in 50 ml n-Hexan leitet man 5 h bei 50°C CO ein. Die heisse Lösung wird anschliessend filtriert (D3) und im Vakuum eingeengt. Beim Abkühlen auf -30°C fällt farbloses (OC)₄MnPPh₂CH₂CH₂CO aus, welches durch erneutes Umkristallisieren aus n-Hexan analysenrein erhalten wird. Ausbeute 109 mg (65.5%). Zers.-P. 128°C. ¹H-NMR (CDCl₃): δ 2.35–2.72 ppm (m, PCH₂CH₂CO); 7.31–7.78 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 82.5 ppm. MS (70 eV): m/e = 380 (19%, M - CO); 352 (36%, M - 2 CO); 324 (6%, M - 3 CO); 296 (20%, M - 4 CO); 268 (39%, M - 5 CO); 240 (100%, M - 5 CO $- C_2H_4$). (Gef.: C, 55.79; H, 3.42; Mn, 13.74; Molmasse massenspektrometr., 408 (1%, M^+). C₁₉H₁₄MnO₅P ber.: C, 55.90; H, 3.46; Mn, 13.46%; Molmasse, 408.2).

(2) 2,2,2,2-Tetracarbonyl-1,1-diphenyl-1-phospha-2-manganacyclohexanon(3). Eine Lösung von 160 mg (0.41 mmol) (OC)₄MnPPh₂CH₂CH₂CH₂ [24] in 20 ml n-Hexan wird in einem 500 ml Hochdruck-Rollautoklaven unter einem CO-Druck von 400 bar 24 h bei 90°C erhitzt. Nach Abkühlen und Öffnen des Autoklaven erhält man in n-Hexan unlösliches, farbloses (OC)₄MnPPh₂CH₂CH₂CH₂-CH₂CO. Ausbeute 156 mg (91.0%). Schmp. 117°C (unter Zers.). ¹H-NMR (CDCl₃): δ 1.72–2.73 ppm (m, PCH₂CH₂CH₂CO); 7.27–7.68 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (-10°C, CHCl₃): δ 44.6 ppm. MS (70 eV): m/e = 394 (23%, M - CO); 366 (4%, M - 2 CO); 338 (20%, M - 3 CO); 310 (34%, M - 4 CO); 282 (100%, M - 5 CO); 254 (94%, M - 5 CO - C₂H₄). (Gef.: C, 56.76; H, 3.66; Mn, 13.23; Molmasse massenspektrometr., 422 (1%, M⁺). C₂₀-H₁₆MnO₅P ber.: C, 56.89; H, 3.82; Mn, 13.01%; Molmasse, 422.3).

Allgemeine Vorschrift für die Darstellung der cyclischen Sulfinato-Komplexe $(OC)_4 \overline{MPPh_2(CH_2)_n} SO_2$ (M = Mn, Re; n = 2-4)

Man lässt bei -40° C auf 0.2–0.4 mmol (OC)₄MPPh₂(CH₂)_n (M = Mn, Re; n = 2-4) [24] 1 h 20 ml flüssiges SO₂ einwirken. Nach dem Verdampfen des SO₂ werden die Rohprodukte säulenchromatographisch (Kieselgel, Aktivität I, $L 20 \text{ cm}, \emptyset 2.5 \text{ cm}$) gereinigt. Als Eluierungsmittel dient mit Ausnahme von (OC)₄MnPPh₂CH₂CH₂SO₂ (Elutionsmittel: Ethylacetat) Chloroform und anschliessend Ethanol. Die aus der Ethanol- bzw. letzten Ethylacetat-Fraktion erhaltenen farblosen Verbindungen (OC)₄MPPh₂(CH₂)_nSO₂ (M = Mn, Re; n =2–4) werden zur abschliessenden Reinigung aus CHCl₃/n-Hexan umkristallisiert.

(1) 2,2,2,2-Tetracarbonyl-3,3-diphenyl- $1\lambda^{6}$ -thia-2-mangana-3-phosphacyclopentan(S,S-dioxid). Einwaage 98 mg (0.26 mmol) (OC)₄MnPPh₂CH₂CH₂CH₂. Ausbeute 53 mg (46.3%). Zers.-P. 183°C. ¹H-NMR (CDCl₃): δ 3.03 ppm (m, PCH₂); 3.36 ppm (m, SO₂CH₂); 7.37-7.74 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 88.7 ppm. (Gef.: C, 48.39; H, 3.11; S, 7.61; Mn, 12.13; Molmasse massenspektrometr., 444. C₁₈H₁₄MnO₆PS ber.: C, 48.66; H, 3.18; S, 7.22; Mn, 12.37%; Molmasse, 444.3).

(2) 2,2,2,2-Tetracarbonyl-3,3-diphenyl- $1\lambda^6$ -thia-2-mangana-3-phosphacyclohexan(S,S-dioxid). Einwage 146 mg (0.37 mmol) (OC)₄MnPPh₂CH₂CH₂CH₂CH₂. Ausbeute 155 mg (91.3%). Schmp. 175°C (unter Zers.). ¹H-NMR (CDCl₃): δ 2.10–2.74 ppm (m, PCH₂CH₂CH₂); 2.96 ppm (m, SO₂CH₂); 7.35–7.82 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 30.8 ppm. (Gef.: C, 49.73; H, 3.58; S, 7.34. Mn, 11.63; Molmasse massenspektrometr., 458. C₁₉H₁₆MnO₆PS ber.: C, 49.79; H, 3.52; S, 7.00; Mn, 11.99%; Molmasse, 458.3).

(3) 2,2,2,2-Tetracarbonyl-3,3-diphenyl- $1\lambda^6$ -thia-2-mangana-3-phosphacycloheptan(S,S-dioxid). Einwaage 121 mg (0.30 mmol) (OC)₄MnPPh₂CH₂CH₂-CH₂CH₂. Ausbeute 125 mg (89.3%). Zers.-P. 152°C. ¹H-NMR (CDCl₃): δ 1.36– 2.20 ppm (m, PCH₂CH₂CH₂CH₂); 3.03–3.71 ppm (m, SO₂CH₂ und PCH₂); 7.39–7.69 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 45.8 ppm (Gef.: C, 50.67; H, 3.76; S, 6.88; Mn, 11.93; Molmasse massenspektrometr., 472. C₂₀-H₁₈MnO₆PS ber.: C, 50.86; H, 3.84; S, 6.79; Mn, 11.63%; Molmasse, 472.3).

(4) 2,2,2,2-Tetracarbonyl-3,3-diphenyl- $1\lambda^6$ -thia-2-rhena-3-phosphacyciopentan(S,S-dioxid). Einwaage 87 mg (0.17 mmol) (OC)₄RePPh₂CH₂CH₂. Ausbeute 83 mg (84.8%). Zers.-P. 191°C. ¹H-NMR (CDCl₃): δ 2.81 ppm (d, t, ³J(HH) 7.1, ²J(PH) 7.2 Hz; PCH₂); 3.33 ppm (t, ³J(HH) 6.3 Hz; SO₂CH₂); 7.33–7.66 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 34.3 ppm. (Gef.: C, 37.13; H, 2.22; S, 5.30; Re, 31.91; Molmasse massenspektrometr., 576 (bez. auf ¹⁸⁷Re). C₁₈H₁₄O₆PReS ber.: C, 37.56; H, 2.45; S, 5.57; Re, 32.35%; Molmasse 575.5).

(5) 2,2,2,2-Tetracarbonyl-3,3-diphenyl-1λ⁶-thia-2-rhena-3-phosphacyclohexan(S,S-dioxid). Einwaage 117 mg (0.22 mmol) (OC)₄RePPh₂CH₂CH₂CH₂CH₂. Ausbeute 124 mg (94.5%). Schmp. 175°C (unter Zers.). ¹H-NMR (CDCl₃): δ 1.98–2.82 ppm (m, PCH₂CH₂CH₂); 3.02 ppm (m, SO₂CH₂); 7.39–7.76 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ –12.7 ppm. (Gef.: C, 38.90; H, 2.81; S, 5.18; Re, 31.23; Molmasse massenspektrometr., 590 (bez. auf ¹⁸⁷Re). C₁₉H₁₆-O₆PReS ber.: C, 38.71; H, 2.74; S, 5.44; Re, 31.58%; Molmasse, 589.6).

(6) 2,2,2,2-Tetracarbonyl-3,3-diphenyl- $1\lambda^6$ -thia-2-rhena-3-phosphacycloheptan(S,S-dioxid). Einwaage 108 mg (0.20 mmol) (OC)₄RePPh₂CH₂CH₂- $\overline{CH_2CH_2}$. Ausbeute 109 mg (90.2%). Zers:-P. 173°C. ¹H-NMR (CDCl₃): δ 1.34– 2.18 ppm (m, CH₂CH₂CH₂CH₂); 3.06–3.74 ppm (m, SO₂CH₂ und PCH₂); 7.40–7.78 ppm (m, P(C₆H₅)₂). ³¹P-{¹H}-NMR (CHCl₃): δ 7.1 ppm. (Gef.: C, 39.39; H, 2.82; S, 5.25; Re, 30.98; Molmasse massenspektrometr., 604 (bez. auf ¹⁸⁷Re). C₂₀H₁₈O₆PReS ber.: C, 39.80; H, 3.00; S, 5.31; Re, 30.85%; Molmasse, 603.6).

Experimentelles zur Strukturbestimmung

Einkristalle von $(OC)_4 MnPPh_2CH_2CH_2CH_2SO_2$ erhält man durch Umkristallisieren aus Chloroform/n-Hexan. Für die Strukturbestimmung wurde ein Kristall mit den ungefähren Abmessungen $0.6 \times 0.2 \times 0.1$ mm in ein Markröhrchen abgefüllt. Die Verbindung kristallisiert monoklin in der zentrosymmetrischen Raumgruppe $P2_1/c$ mit a 948.9(12), b 1072.7(2), c 1953.2(4) pm und β 93.89(5)°, Z = 4, $V = 1.984 \times 10^9$ pm³, d_{ber} . 1.535 g cm⁻³. Zur Auswertung der Struktur wurden die Intensitäten von 2399 symmetrieunabhängigen Reflexen bis zu einem θ -Wert von 25° registriert. Ihre Lösung gelang mit Hilfe einer Patterson-Synthese, aus der die Lage des Manganatoms zu entnehmen war. Nach mehreren Verfeinerungscyclen konnten mit nachfolgenden Differenz-Fourier-Synthesen alle übrigen Atome mit Ausnahme von Wasserstoff gefunden werden. Mit Einheitsgewichten und nach Einführung anisotroper

œ
щ
3
ធ
9
È

ORTSKOORDINATEN (in Einheiten der Elementarzelle) UND ANISOTROPE THERMISCHE PARAMETER (in 1911²), DER TEMPERATURFAKTOR IST GEGEBEN DURCH DEN AUSDRUCK: 1'= exp[--2x²(U₁₁h²a^{*}² + U₂₂h²b^{*2} + U₃₃h²e^{*2} + 2U₁₃hha^{*}e^{*} + 2U₁₃hha^{*}e^{*} + 2U₁₃hha^{*}e^{*} + 2U₁₂hha^{*}b^{*})] (Die Stundardabweichungen

in Einheiten der	letzten Dezima	ulstelle sind in Kla	mmern angegeber	()	-	5 horquus ; 70 pig fragma,	194 A RADO & STA 644 44 1 4 44 9 44 1 1 1 1 1 1 1 1 1 1 1		
Atom	x/a	y/b	2/C	<i>U</i> ₁₁	U_{22}	U ₃₃	$U_{2,3}$	U ₁₃	U_{12}
S(1)	0.3754(2)	0.0265(2)	0.2919(1)	585(13)	385(11)	325(10)	-106(9)	-59(9)	47(10)
Mn(2)	0.1790(1)	-0.0111(1)	0.2181(1)	381(6)	342(6)	269(5)	-18(5)	71(4)	31(5)
P(3)	0.3168(2)	-0.0395(2)	0.1244(1)	339(10)	299(10)	244(9)	9(8)	37(7)	4(8)
C(4)	0.4994(8)	-0.0903(8)	0.1421(4)	382(43)	459(48)	352(42)	64(36)	50(34)	88(37)
C(5)	0.5832(9)	-0.0320(9)	0.2037(4)	375(46)	699(62)	433(47)	66(45)	-70(37)	-43(43)
C(6)	0.5259(9)	-0.0652(8)	0.2721(4)	395(47)	469(50)	522(51)	-140(41)	-55(38)	25(39)
0(1)	0.3470(7)	-0.0156(7)	0.3613(3)	889(50)	963(55)	285(30)	-87(34)	12(31)	140(44)
O(8)	0.4225(8)	0.1546(6)	0.2864(4)	821(51)	375(35)	982(55)	-92(36)	-301(42)	-47(34)
C(9)	0.1723(9)	0.1623(9)	0.2014(4)	399(47)	508(55)	460(50)	-125(41)	46(38)	104(41)
(6)0	0.1628(8)	0.2651(6)	0.1934(4)	915(56)	390(38)	818(50)	-45(34)	30(41)	168(37)
C(10)	0.0232(9)	-0.0413(9)	0.1622(4)	415(50)	680(62)	469(50)	-25(45)	132(42)	71(45)
0(10)	-0.0781(7)	-0.0613(8)	0.1288(4)	498(42)	1230(68)	(91)669	23,47	(16)16	-138(46)
C(11)	0.0732(10)	0.0166(9)	0.2910(4)	669(69)	647(55)	407(46)	28(43)	149(43)	162(50)
0(11)	0.0053(8)	0.0355(8)	0.3350(3)	977(57)	1176(67)	551(42)	-29(43)	453(42)	320(52)
C(12)	0.1924(9)	-0.1763(8)	0.2454(4)	598(56)	499(54)	229(37)	-121(36)	91(36)	
0(12)	0.1951(7)	-0.2764(6)	0.2648(3)	872(52)	440(38)	611(42)	116(33)	156(36)	-5(35)
C(13)	0.2521(8)	-0.1637(7)	0.0653(4)	316(39)	446(44)	284(38)		120(30)	16(34)
C(14)	0.2484(10)	-0.2827(7)	0.0912(4)	893(70)	332(43)	300(42)	63(34)	200(43)	94(46)
C(15)	0.2059(11)	-0.3812(9)	0.0499(5)	810(71)	551(59)	637(63)	-92(49)	472(56)	-168(52)
C(16)	0.1636(9)	-0.3611(10)	-0.0188(5)	472(55)	710(68)	650(63)	-440(55)	82(46)	
c(11)	01878(10)	-0.2332(11)	-0.0444(5)	572(60)	863(78)	530(59)	-304(56)	-197(47)	199(57)
C(18)	0.2118(8)	-0.1417(8)	0.0033(4)	432(46)	533(51)	354(43)	-50(39)	-25(35)	52(40)
C(19)	0.3214(8)	0.1011(7)	0.0730(3)	406(42)	366(41)	272(36)	-12(31)	76(31)	-19(34)
C(20)	0.2002(9)	0.1465(8)	0.0390(4)	443(48)	497(49)	450(46)	68(40)	14(38)	97(40)
C(21)	0.2055(11)	0.2524(8)	-0.0016(5)	646(62)	465(53)	579(67)	59(45)	75(48)	183(48)
C(22)	0.3291(11)	0.3159(8)	-0.0066(4)	875(76)	441(51)	424(49)	91(41)	227(49)	46(52)
C(23)	0.4510(11)	0.2746(9)	0.0289(5)	622(61)	579(58)	648(63)	167(50)	306(52)	-76(50)
C(24)	0.4466(8)	0,1655(8)	0.0668(4)	394(46)	546(53)	437 (45)	69(41)	91 (37)	7 (40)

Temperaturfaktoren für alle Atome ausser H (vgl. Tab. 3) konvergierte der R-Wert in einer abschliessenden Verfeinerungsrechnung zu 0.072. Die Strukturfaktoren wurden mit den Atomformfaktoren für neutrale Atome [34] und den in Tab. 3 angegebenen Atomparametern berechnet. Eine Liste der beobachteten (F_0) und berechneten (F_c) Strukturfaktoren findet sich in Lit. 35. Die Rechnungen wurden mit dem Programmsystem SHEL-76 [36] auf der Datenverarbeitungsanlge TR 440 des Rechenzentrums der Universität Tübingen durchgeführt.

IR-, NMR-, Massenspektren, Röntgenstrukturanalyse, Mikroelementaranalysen und Manganbestimmungen

IR-Spektren: Beckman IR 12 Gitterspektralphotometer und FT-Spektrometer der Fa. Bruker, Modell IFS 113c. ¹H (int. Standard TMS)- und ³¹P-{¹H} (ext. Standard 85proz. Phosphorsäure/D₂O; Messfrequenz 32.39 MHz)-NMR-Spektren: WP 80 der Fa. Bruker. Massenspektren: Varian MAT 711 A (Elektronenenergie 70 eV). Kristallstruktur: Automatisches Einkristalldiffraktometer der Fa. Enraf-Nonius, Modell CAD 4, Graphitmonochromator, monochromatische Mo- K_{α} -Strahlung. Mikroelementaranalysen: Carlo Erba, Modell 1104. Manganbestimmungen: Atomabsorptionsspektralphotometer, Modell 1248 der Fa. Beckman.

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, danken wir für die finanzielle Förderung dieser Arbeit. Ausserdem sind wir der BASF Aktiengesellschaft, der Schering AG und der DEGUSSA für die Überlassung von wertvollem Ausgangsmaterial zu Dank verpflichtet. Für die Unterstützung bei der Lösung der Struktur danken wir den Herren K.-P. Frank und Prof. Dr. J. Strähle.

Literatur

- 1 A. Wojcicki, Advan. Organometal. Chem., 11 (1973) 87.
- 2 F. Calderazzo, Angew. Chem., 89 (1977) 305; Angew. Chem. Int. Ed., 16 (1977) 299.
- 3 A. Wojcicki, Advan. Organometal. Chem., 12 (1974) 31.
- 4 G. Vitzthum und E. Lindner, Angew. Chem., 83 (1971) 315; Angew. Chem. Int. Ed., 10 (1971) 315.
- 5 S.E. Jacobson, P. Reich-Rohrwig und A. Wojcicki, Inorg. Chem., 12 (1974) 717.
- 6 R.G. Severson und A. Wojcicki, J. Amer. Chem. Soc., 101 (1979) 877.
- 7 H. Berke und R. Hoffmann, J. Amer. Chem. Soc., 100 (1978) 7224.
- 8 R.L. Pruett, Advan. Organometal. Chem., 17 (1979) 1.
- 9 D. Forster, J. Amer. Chem. Soc., 98 (1976) 846.
- 10 G.P. Chiusoli, Acc. Chem. Res., 6 (1973) 422.
- 11 C. Masters, Advan. Organometal. Chem., 17 (1979) 61.
- 12 P. Diversi, G. Ingrosso und A. Lucherini, J. Chem. Soc. Chem. Commun., (1978) 735.
- 13 P. Diversi, G. Ingrosso, A. Lucherini und S. Murtas, J. Chem. Soc. Daltron Trans., (1980) 1633.
- 14 W. Keim, J. Organometal. Chem., 19 (1969) 161.
- 15 R.J. McKinney, R. Hoxmeier und H.D. Kaesz, J. Amer. Chem. Soc., 97 (1975) 3059.
- 16 E. Lindner, G. von Au und H.-J. Eberle, Z. Naturforsch. B, 33 (1978) 1296.
- 17 E. Lindner und H.-J. Eberle, Angew. Chem., 92 (1980) 70; Angew. Chem. Int. Ed., 19 (1980) 73.
- 18 E. Lindner und H.-J. Eberle, J. Organometal. Chem., 191 (1980) 143.
- 19 E. Lindner, H.-J. Eberle und S. Hoehne, Chem. Ber., 114 (1981) 413.
- 20 E. Lindner und G. von Au, Angew. Chem., 92 (1980) 843; Angew. Chem. Int. Ed., 19 (1980) 824.

- 402
- 21 E. Lindner und G. von Au, Z. Naturforsch. B, 35 (1980) 1104.
- 22 E. Lindner und G. von Au, J. Organometal. Chem., 202 (1980) 163.
- 23 E. Lindner, G. Funk und S. Hoehne, Angew. Chem., 91 (1979) 569; Angew. Chem. Int. Ed., 18 (1979) 535.
- 24 E. Lindner, G. Funk und S. Hoehne, Chem. Ber., im Erscheinen.
- 25 E. Lindner, G. Funk und F. Bouachir, Chem. Ber., im Erscheinen.
- 26 E. Lindner, G. Funk und S. Hoehne, J. Organometal. Chem., im Erscheinen.
- 27 F.A. Hartman und A. Wojcicki, Inorg. Chem., 7 (1968) 1504.
- 28 S. Hietkamp, D.J. Stufkens und K. Vrieze, J. Organometal. Chem., 169 (1979) 107.
- 29 L. Pauling, Die Natur der Chemischen Bindung, 3. Aufl., S. 217 und 245, Verlag Chemie, Weinheim/ Bergstr. 1968.
- 30 D. Kivelson, J. Chem. Phys., 22 (1954) 904.
- 31 M.I. Bruce und A.D. Redhouse, J. Organometal. Chem., 30 (1971) C78.
- 32 M.R. Churchill und J. Wormald, Inorg. Chem., 10 (1971) 572.
- 33 S.L. Miles, D.L. Miles, R. Bau und T.C. Flood, J. Amer. Chem. Soc., 100 (1978) 7278.
- 34 D.T. Cromer und J.B. Mann, Acta Crystallogr. A, 24 (1968) 321.
- 35 G. Funk, Teil der geplanten Dissertation 1981.
- 36 G. Sheldrick, Universität Cambridge 1976.